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Abstract

A new sequence is described to measure the cross-correlation rates between the chemical shift anisotropy of
the carbonyl carbon-13 nucleus and the dipole-dipole interaction between this carbonyl and the alpha-proton in
proteins. The sequence is based on the symmetrical reconversion principle and is insensitive to experimental errors
and to violations of the secular approximation. The cross-correlation rate depends on the backbone angle ψ. The
advantages and limitations of the sequence are discussed.

Abbreviations: CSA – chemical shift anisotropy; DD – dipole-dipole; MQC – multiple quantum coherence; NMR
– nuclear magnetic resonance; SQC – single quantum coherence.

Introduction

Cross-correlated relaxation rates depend on the angle
subtended between two tensorial interactions, thus
providing valuable structural information (Reif et al.,
1997; Schwalbe, 2001; Kloiber et al., 2002). For
example, the cross-correlation rate between the two
dipole-dipole (DD) interactions NHN and HNHα in
proteins depends on φ-angles (Boyd et al., 1991). In
spectra of single quantum coherences (SQC), cross-
correlated relaxation rates cause lines that corres-
pond to different single-transition operators to relax
differentially (Goldman, 1984). The frequencies of
the single-transition operators are separated by scalar
couplings. Whenever these scalar couplings become
small, overlap of resonances makes it difficult to ex-
tract accurate line widths, and their shapes can be
affected by transverse cross-relaxation due to the vi-
olation of the secular approximation (Palmer et al.,
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1992). The measurement of cross-correlated relaxa-
tion rates of SQC’s in macromolecules have therefore
been mainly limited to interference effects between a
chemical shift anisotropy (CSA) and a DD interac-
tion with a directly attached nucleus. Cross-correlation
rates can also be measured in a time-domain approach
by monitoring the build-up of an operator Q that res-
ults from partial conversion of an initial operator P
(Tjandra et al., 1996). The expectation values of the
operators evolve as

〈Q〉 (t)

〈P 〉 (t)
= tanh (RCCt) . (1)

Measurement of both expectation values 〈Q〉 and
〈P〉 as a function of time allows one to circumvent
problems due to overlap, but does not resolve prob-
lems due to violations of the secular approximation.
Furthermore, errors might be introduced if the op-
erators Q and P cannot be detected with the same
efficiency. We have recently introduced a new scheme
based on the time-domain approach that greatly al-
leviates both problems (Pelupessy et al., 2003). The
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approach is based on detecting the decay of both op-
erators Q and P, and monitoring the conversion of Q
into P and vice-versa. The scheme can be summarised
as follows

preparation−−−−−−−→ P relaxation−−−−−−→ P detection−−−−−→ I
preparation−−−−−−−→ P relaxation−−−−−−→ Q detection−−−−−→ II
preparation−−−−−−−→ Q relaxation−−−−−−→ P detection−−−−−→ III
preparation−−−−−−−→ Q relaxation−−−−−−→ Q detection−−−−−→ IV

From these four experiments, which we named
symmetrical reconversion scheme, the cross-correlation
rate can be easily extracted :√

〈Q〉II(t)〈P 〉III (t)

〈P 〉I (t)〈Q〉IV (t)
= tanh(|RCC |t). (2)

Since the same detection and preparation blocks
are used in the experiments that contribute to the de-
nominator of Equation 2 as in the experiments that de-
termine the numerator, errors due to unequal detection
efficiencies are automatically cancelled. Moreover,
this scheme is much less sensitive to violations of
the secular approximation, as can be demonstrated by
simulation. In this article we present a new scheme
based on the symmetrical reconversion principle to
measure the cross-correlated relaxation rate in proteins
due to interference between the CSA of the C′ car-
bonyl nucleus and the long-range dipole-dipole C′Hα

interaction. This rate is related to the �-angle.

Pulse sequence and theory

Figure 1 shows a few atoms in the vicinity of the C′
carbonyl nucleus in proteins. The cross correlation rate
R(C′/C′Hα) is given by (Goldman, 1984).

R(C′/C′Hα) = µ0h̄γ2
CγH B0

24πr3(C′Hα)

{
(σxx − σzz)

[4Jxx,CH(0) + 3Jxx,CH(ωC)] +
(σyy − σzz)[4Jyy,CH(0)

+3Jyy,CH(ωC)]} , (3)

where σii are the principal components of the C′ CSA
tensor as depicted in Figure 1, r(C′Hα) is the distance
between the C′ and Hα nuclei and the other symbols
have their usual meaning. In the absence of fast local
motions the spectral density J(ω) is given by

Jii,CH(ω) = 2

5
P2 cos(�ii,CH)

τc

1 + ω2τ2
C

, (4)

Figure 1. Atoms in the vicinity of the carbonyl carbon C′ in pro-
teins. The dihedral angle ψ around the C′Cα-bond is indicated
on the Newman projection. The principal components of the CSA
tensor σxx, σyy and σzz are oriented so that the most shielded com-
ponent σzz is perpendicular to the peptide plane, while the least
shielded component σxx subtends an angle α with respect to the C′N
bond. All atoms shown lie in the same plane if ψ = −120◦.

where �ii,CH is the angle between the σii component
and the vector r(C′Hα). Using the standard geometry
of Figure 1 these angles can be expressed as:

cos �xx,CH =− cos(γ) cos(64◦ − α)+
sin(γ) sin(64◦ − α) cos(ψ − 120◦) (5a)

cos �yy,CH =− cos(γ) cos(154◦ − α)+
sin(γ) sin(154◦ − α) cos(ψ − 120◦),(5b)

where α is the angle between σxx and the vector r(C′N)
and γ the angle between the vectors r(C′Hα) and
r(C′Cα).

The sequence used to measure the CSA/DD cross-
correlation rate R(C′/C′Hα) is shown in Figure 2. At
point b in the sequence the operator 2C′

zNz is cre-
ated. For experiments I and II the relaxation period
T starts after a (π/2)x pulse is applied to the protons
in order to destroy any spurious 4Hα

zC
′
zNz coherence.

A (π/2)x pulse is applied to C′ to create a −2C′
yNz

coherence. In experiments III and IV three successive
INEPT steps create three spin order 4Hα

zC
′
zNz. Two

proton π/2 pulses, of which the second one is phase-
alternated, are followed by a π/2 pulse applied to C′
to select the −4Hα

zC′
yNz coherence. During the relax-

ation period T, Cα-decoupling is applied to suppress
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Figure 2. Symmetrical reconversion sequences used to measure the cross-correlation rate R(C′/C′Hα). A set of four experiments is performed.
In experiments I and II the operator 2C′

yNz is created while in experiments III and IV one excites 4Hα
z C′

yNz. After the relaxation period T,
the 2C′

yNz coherence is detected in experiments I and III while 4Hα
z C′

yNz is selected and converted into 2C′
zNz in experiments II and IV.

In all four experiments the 2C′
zNz order is converted into detectable HN

x coherence after t1 evolution of the amide nitrogen. Filled and open
rectangles correspond to π/2 and π pulses. Dotted rectangles stand for π pulses that compensate for Bloch-Siegert shifts. Long open rectangles
represent decoupling. Short low rectangles stand for selective π/2 pulses applied at the water resonance. All phases are along the x-axes unless
specified otherwise. The phases of π/2 pulses marked by asterisks are alternated independently while the signals are added and subtracted. The
delays are set to τ1 = 1/41J(NHN) = 2.7 ms, τ2 = 1/41J(NC′) = 16.5 ms, τ3 = 1/41J(C′Cα) = 4.5 ms and τ4 = 1/41J(CαHα) = 1.7 ms.

Figure 3. Peak heights measured with the sequence of the Figure 2
for three different relaxation delays T = 52.9, 78.5 and 104.1 ms.
The ratio of Equation 2 is plotted against the relaxation delay T for
three representative residues of human ubiquitin.

effects of the longitudinal R(Cα/CαHα) (CSA/DD)
cross-correlation rate (McCoy and Mueller, 1992). In
experiments I and III the 2C′

yNz coherence is detected
after the relaxation period T. A π/2 pulse is applied
to the protons, followed by a gradient pulse, in order
to suppress spurious 4Hα

zC′
yNz coherence. In experi-

ments II and IV the 4Hα
zC′

yNz coherence is selected
and converted into 2C′

zNz. In all four experiments the

2C′
zNz coherence is converted into a detectable HN

x

coherence after a t1 evolution of the amide nitrogen.

Results

The cross-correlated relaxation rate R(C′/C′Hα) has
been measured for a sample of 13C/15N labelled hu-
man ubiquitin (100 µl, 1.5 mM, pH 4.5) at a tem-
perature of 300 K and a proton Larmor frequency of
600 MHz. The 2D spectra were recorded with the
scheme of Figure 2, with 56 and 512 complex points
in the t1 and t2 dimensions and 128 scans per t1 in-
crement. The carbon carrier frequency was positioned
in the center of the carbonyl region (177 ppm), shifted
to the center of the carbon-α region (55 ppm) between
points c and d, and again between points h and i of the
sequence of Figure 2. The carbon π/2 pulses (which
must affect either C′ or Cα regions, without necessar-
ily excluding the Cβ region) had square profiles with
RF strengths of �/

√
15, where � is the separation

between the carbonyl and carbon-α region. The car-
bon π pulses had G3 profiles and durations of 350 µs.
Note that there is no need to refocus the scalar coup-
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Figure 4. The rates R(C′/C′Hα) obtained with the shortest and longest T delays are plotted against the average value of R(C′ /C′Hα).

lings J(CαCβ) because of the shortness of the delays
2τ4 = 1/2J(CαHα) where the Cα-spins are sensitive
to these couplings. Three experiments were performed
with relaxation delays T = 52.9, 78.5 and 104.1 ms.
In Figure 3 the ratio of equation 2 is plotted against T
for three representative residues. In Figure 4 the rates
obtained for the shortest and longest relaxation delays
T are plotted against the average rates. The results at
different relaxation delays T agree remarkably well
with an error in the average rates of only 0.04 s−1.

In Figure 5 the cross-correlation rates thus determ-
ined and the theoretical curves derived from Equations
3–5 are plotted against the ψ-angle. The values for the
principal components and the orientations of the CSA
tensors are taken from Bax and Cornilescu (2000),
who derived the CSA parameters from chemical shift
differences of ubiquitin in isotropic and liquid crystal-
line phases, assuming the orientations and magnitudes
of the CSA tensors either to be the same for all
residues or only for a subset of amino acids. For
curve (a) CSA tensors averaged over all amino acids
were used (α = 38◦ σxx = −74.7, σyy = −11.8,
σzz = 86.5), while for curves (b) and (c) distinct CSA
tensors were used for β-sheets (α = 37◦, σxx = −76.5,
σyy = −7.5, σzz = 84.0) or for α-helices (α = 42◦,
σxx = −71.2, σyy = −23.3, σzz = 94.5).

Figure 5. Measured cross-correlation rate plotted against ψ-angles
and theoretical curves derived from equations 3-5. The ψ-angles
were obtained from the NMR structure (Cornilescu et al., 1998).
The values for the principal components and the orientations of the
CSA tensor are taken from Bax and Cornilescu (2000). The dotted
curve is obtained with average CSA values, the thick curve with
CSA values derived for β-sheets and the thin curve with CSA values
appropriate for α-helices.

Discussion

The correlation between the experimental results and
curve (a) of Figure 5 is quite reasonable, although
one would expect the experimental rates to be lower
if one took internal motion into account. Surprisingly
the rates calculated for β-sheets seem to fit better with
experimental rates for resonances in α-helices which
have negative ψ-angles and vice-versa. This is exactly
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the opposite of what is expected. The reason for this
discrepancy probably lies in internal motions. Indeed
the cross-correlation rate R(C′/C′Hα) is affected by an
order parameter S2 while the residual chemical shift is

weighted by S =
√

S2, so that the cross-correlation
rate is more sensitive to fast internal motions. On
the other hand, residual CSA’s are more sensitive to
slower internal motions. We intend to measure a full
set of cross-correlation rates that depend on the CSA
of C′ as suggested by Ghose et al. (1998) in order to
determine the source of the inconsistencies between
the different methods.

It is useful to compare these new experiments with
those developed to measure cross-correlation rates of
multiple quantum coherences (Reif et al., 1997), in
particular with MQC sequences designed to measure
the effect on C′Cα-coherences of the cross-correlation
rate R(C′/CαHα) (Yang et al. 1997). We have com-
pared the most sensitive version of this MQC experi-
ment (Chiarparin et al. 1999) with our new scheme. At
a proton Larmor frequency of 600 MHz (400 MHz),
R(C′/CαHα) varies from 10 to −15 (7 to −10) s−1

for a molecule of the size of ubiquitin. This rate
amounts to about 60% (40%) of the auto-correlated
relaxation rate of the MQC 2C’xCα

x , while R(C′/C′Hα)
represents only about 20% (30%) of the relaxation
rate of the SQC C′

x . Hence, specially at higher mag-
netic fields, the MQC experiments are expected to
be more sensitive. However, for R(C′/C′Hα) there
is a clear distinction between conformations with ψ-
angles that are positive and negative. The relaxation
period T is quite simple and does not require any
prolonged selective Cα pulses. Moreover, the sensit-
ivity of the MQC experiments is considerably reduced
for residues which have Cβ resonances in the Cα re-
gion. The cross-correlation effect that converts MQC
2C′

xCα
x into 4C′

yCα
yHα

z inevitably results from a com-
bination of R(C′/CαHα) and R(Cα/C′Hα), thus redu-
cing the accuracy. The new SQC experiment is less
sensitive to pulse miscalibrations, especially of proton
pulses. Pulse miscalibrations diminish the signal-to-
noise ratio but hardly contribute to systematic errors
in the rates. The rates of the SQC and MQC experi-
ments could be used in a complementary way. If one
only has time to perform a single experiment, the new
SQC scheme appears to be preferable, provided the
signal-to-noise ratio is sufficient.

Conclusions

A new sequence, based on the principles of symmet-
rical reconversion, has been presented to measure the
cross-correlation rate R(C′/C′Hα) between the CSA
of the carbonyl nucleus C’ and the DD interaction
C′Hα in proteins. The sequence is insensitive to er-
rors due to violations of the secular approximation and
automatically compensates for unequal detection effi-
ciencies of various terms in the density operators. The
rate R(C′/C′Hα) provides independent information on
dihedral ψ angles in proteins, although effects of in-
ternal dynamics must be taken into account. The rates
measured in human ubiquitin show a good correlation
with predicted values.
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